twentyseventeen
domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init
action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /home/hydrogeologymsu/public_html/wordpress/wp-includes/functions.php on line 6121Many questions remain unanswered about the sustainability of water resources in the Great Lakes Region with impending climate change and major land use changes associated with intensive biofuel production. Significant areas of prime farmland and marginal land set aside in conservation programs across the Great Lakes Basin are being targeted for biofuel crop production systems (Robertson et al., 2008; Kim et al., 2009).<\/p>\n
The associated land cover\/management changes will have unknown, but potentially significant, impacts on the quantity and quality of groundwater recharge. This recharge is the primary source of water to streams, lakes, and wetlands across the region. Additionally, Midwestern climate is predicted to change significantly in the coming decades with warmer temperatures, as well as higher precipitation and evapotranspiration, potentially leading to a net soil moisture deficit along with more frequent flooding (USGCRP, 2009). Working in conjunction with the Great Lakes Bioenergy Research Center (GLBRC), researchers from the University of Wisconsin (UW)-Madison, Michigan State University (MSU), Ball State University (BSU) and the United States Geological Survey (USGS) will conduct a collaborative multi-scale effort to:<\/p>\n
<\/p>\n
Forecasting the effects of large-scale changes in agricultural management practices on groundwater is a significant shift from the past when such impacts were given little consideration. There is urgent need for studies of coupled land use and climate change because both changes are happening simultaneously. Our analyses will provide important information for water resource managers charged with protection of water for ten percent of the United States population and also land managers and farmers concerned with optimizing sustainable biofuel production in a time of impending climate change.<\/p>\n","protected":false},"excerpt":{"rendered":"
Many questions remain unanswered about the sustainability of water resources in the Great Lakes Region with impending climate change and major land use changes associated with intensive biofuel production. Significant areas of prime farmland and marginal land set aside in conservation programs across the Great Lakes Basin are being targeted for biofuel crop production systems … <\/p>\n