Investigating the Influences of Septic Systems on Near-Shore Water Quality and Swimmer’s Itch in Higgins Lake, MI

Higgins_partial_aerial

Aerial image of Higgins Lake showing shelf area (lighter blue).

Higgins Lake is Michigan’s 10th largest inland lake, and one of its deepest. Despite its long history of clean water, Higgins Lake is experiencing changes in water quality, underwater vegetation, invasive species, and Swimmer’s Itch. Many of these changes impact the shallow region near shore, in the area called the shelf. The current water quality monitoring program focuses on the deeper areas of Higgins Lake. These measurements are not always the same in the shallower regions of the lake.

The area surrounding Higgins Lake includes two state parks, >1300 riparian landowners and thousands of residents in the surrounding townships. In 1996, a USGS study of Higgins Lake reported a link between residential density and lower water quality due to nutrient contamination. The majority of the shoreline of Higgins Lake is populated by septic-served homes. These septic systems may act as a major source of near-shore nutrient contamination, especially during high occupancy times, such as summer. (more…)

Exploring Dynamic Interactions Between Surface Water and Groundwater

The interaction between groundwater and that on the surface is not understood well. Its aspects are both complex and in want of better ways to measure such things as stream flow. There is a need for newer methods to be found in order that we can more fully understand these systems and help maintain them.

Through looking at both the Au Sable and Manistee River basins’ headwaters, our objective of this project is to develop methods to increase our knowledge of temperature, stream flow rates, groundwater recharge rates, etc. in these areas. In a two year span, forty gages are to be installed in both the headwaters of the Manistee and the Au Sable rivers. Though the state does have groundwater assessment tools out there, the system is not focused on the headwaters. We are creating a much denser network to narrow in on these specific places in the river system to add to the overall knowledge of rivers. (more…)

Forecasting and Evaluating Vulnerability of Watersheds to Climate Change, Extreme Events, and Algal Blooms

Six Word Summary:

Extreme Events Change Nutrient Delivery, Blooms

Furthering steps taken by a past EPA Grant, this project is looking at predicting harmful algal blooms using remote sensing, hydrologic models, and landscape features. With current extreme events, such as droughts and storms, caused by climate change, we want to assess how they will impact both water quality and algal blooms management. Looking into the relationship between extreme events and water quality, we hope to increase the variety of tools at our disposal. This will in turn help us to not only better understand this relationship, but also allow us to have a better knowledge of the impacts on water quality and algal blooms by different extreme events. (more…)

CLASS: Coupled Landscape, Atmospheric, and Socioeconomic Systems (High Plains Aquifer)

Large portions of the Ogallala-High Plains aquifer (henceforth, HPA) complex, underlying approximately 450,000 km2 from Texas to South Dakota, are experiencing fundamentally unsustainable groundwater withdrawals due to large scale irrigation [McMahon 2000]. Since pumping began in earnest in the 1930’s [Weeks et al. 1988], storage in the HPA, the largest aquifer in North America [Jackson et al. 2001], has declined by 333 km3 [McGuire 2009]. Despite rapid water table drawdown and near depletion of some portions of the aquifer [McGuire 2009], irrigated acreage continues to expand [NASS 2007, 2002, 1997]. Underlying natural and socioeconomic drivers of this expansion are heterogeneous in time and space, driven by changes in climate, product demand (due to biofuels development, global population expansion, etc.), energy costs, and other factors [i.e. Peterson and Bernardo 2003]. Although a range of management and policy actions could help move this region toward sustainability, such efforts are complicated by a diverse range of state laws and regulations, economic drivers and agricultural production systems, variable soil productivity and aquifer storage, and forecast changes in temperature and precipitation [e.g., Ashley and Smith 1999; McGuire et al. 2003; Sophocleous 2010].
 
 
 
 

(more…)

Predicting the Impacts of Climate Change on Agricultural Yields and Water Resources in the Maumee River Watershed

Projected changes in 21st century climate will drive adaptive management strategies in agricultural production systems, both of which will significantly impact water resources in the Great Lakes region. These strategies will likely include selection of alternate crops, shifting planting and harvest times, double-cropping in previously single-cropped areas, and increasing use of irrigation. Evaluating how such strategies might simultaneously impact yields and water resources at the basin-scale will help guide decision makers toward effective adaptation strategies and inform the development of decision support systems to further address inherent tradeoffs.

We propose to apply a newly-developed coupled crop-growth and hydrologic model SALUS-ILHM, to simulate scenarios of climate change impacts on crop yields and water resources across the Maumee River Watershed (MRW) in Southeast Michigan, Northeast Indiana, and Northwest Ohio. (more…)

USGS Wisconsin: Implications of Climate Change and Biofuel Development for Great Lakes Regional Water

Many questions remain unanswered about the sustainability of water resources in the Great Lakes Region with impending climate change and major land use changes associated with intensive biofuel production. Significant areas of prime farmland and marginal land set aside in conservation programs across the Great Lakes Basin are being targeted for biofuel crop production systems (Robertson et al., 2008; Kim et al., 2009).

The associated land cover/management changes will have unknown, but potentially significant, impacts on the quantity and quality of groundwater recharge. This recharge is the primary source of water to streams, lakes, and wetlands across the region. Additionally, Midwestern climate is predicted to change significantly in the coming decades with warmer temperatures, as well as higher precipitation and evapotranspiration, potentially leading to a net soil moisture deficit along with more frequent flooding (USGCRP, 2009). Working in conjunction with the Great Lakes Bioenergy Research Center (GLBRC), researchers from the University of Wisconsin (UW)-Madison, Michigan State University (MSU), Ball State University (BSU) and the United States Geological Survey (USGS) will conduct a collaborative multi-scale effort to:

  • 1) expand ongoing field monitoring effort to collect a detailed data set of collocated, surface and subsurface water and nutrient fluxes and above- and below-ground biomass for a variety of model biofuel feedstock cropping systems,
  • 2) use our data set along with regional water quality and quantity data, provided in part by USGS, to further develop, parameterize and validate a new biogeophysical hydrology model,
  • 3) use our model to explore the implications of coupled climate change and biofuel-based land-use changes for Great Lakes Basin water quantity and quality, and
  • 4) perform a side-by-side comparison between a new landscape hydrology code and a USGS hydrology model.

(more…)

NOAA Sea Grant: Quantifying the Impacts of Projected Climate Changes on the Grand Traverse Bay Region: An Adaptive Management Framework

Great Lakes coastal communities are already feeling the impacts of climate variability and change. Communities across the Grand Traverse Bay (GTB) watershed have witnessed changes in lake ice cover, seasonal precipitation, air and lake temperatures, and storm severity.

These changes have occurred against a backdrop of increasing population and urbanization across the watershed. Parallel climate and land use change drivers have altered water sediment, nutrient, toxin, and pathogen fluxes across the GTB watershed. Forecasts suggest that warming temperatures and altered precipitation patterns are likely to accelerate during the 21st century, which threatens economically and ecologically vital uses of the GTB and its contributing waters.

 

 

 

 

(more…)

LHM (formerly ILHM)

Conceptual diagram of the LHM domain

The Landscape Hydrology Model (LHM) is a new landscape hydrology simulation suite capable of very large domain, fine resolution modeling. It simulates nearly the entire terrestrial hydrologic cycle with full energy- and water-balance physically-based component modules.  LHM incorporates a host of novel components, but integrates fully with the USGS MODFLOW software, and allows existing MODFLOW simulations to run with little modification.

Structure

LHM is written primarily in MATLAB, with a number of ArcGIS interface modules written in Python.  It is coupled with MODFLOW using a pass-to-disk coupling,  which requires a slight modification of the MODFLOW source code.  Currently, the plan is to migrate fully to Python within the next year, as Python provides a much more robust development environment, and greater possibilities for GUI front end development. (more…)

Characterizing Soil Moisture Variations in the Unsaturated Zone

Vadose zone soil moisture variationWe are using electrical resistivity tomography to image the dynamic nature of soil moisture, and coupling this with high resolution models to better understand transpiration dynamics and unsaturated flow. We are using time-lapse hydrogeophysical tools to characterize soil moisture variability beneath a range of vegetation types. Those tools include 2D and 3D electrical resistivity tomography (ERT), and ground-penetrating radar (GPR).

We will then combine our measurements with detailed site characterization, point measurements of soil temperature and moisture, and numerical models of hydrological and plant processes to quantify root-zone moisture dynamics with an unprecedented level of detail. (more…)

Modeling and Monitoring Hydrologic Processes in Large Watersheds

We have developed a novel hydrologic process model called the Integrated Landscape Hydrology Model (ILHM), which is a framework of existing and novel codes to simulate the entire hydrologic cycle at large watershed scales. ILHM is capable of modeling all the major surface and near-surface hydrologic processes including evapotranspiration, groundwater recharge, and stream discharge. In the first published application of the model, the ILHM-modeled stream flows compared favorably with measured data with a minimum of parameter calibration. It was tested for a small watershed (~130 square kilometers) in Michigan, and is currently being applied to much larger domains. (more…)

Modeling Watershed Scale Groundwater Flow and Geochemistry

Cedar Creek Nitrate ConcentrationsGround water chemistry is reflective of time-weighted averages of anthropogenic inputs originating from spatial and temporal patterns of land use. We developed an approach to examine potential relationships between land use-derived solutes and baseflow surface water quality using regional ground water and solute transport models linked to GIS. Our first test of this approach estimated chloride concentrations in surface water due to road salt transport through ground water in Michigan’s Grand Traverse Bay watershed.

Further development of  watershed-scale groundwater flow and transport models  has been undertaken to examine the impacts of various land uses on nitrate concentrations.  In Michigan, streams are predominantly groundwater-fed for much of the year.  Therefore, understanding groundwater nitrate concentrations and fluxes is vital to understanding stream water quality.  The figure on the left shows a preliminary simulation of total N concentrations in Cedar Creek, a small  subwatershed of the Muskegon River in central lower Michigan. (more…)

Estimating Aquifer Properties from Geophysical and Tracer Data

Kesterson Seismic Slowness Aquifer PropertiesNew methods of estimating aquifer properties are needed to improve our understanding of the factors that influence the transport and fate of groundwater contaminants, and to better design remediation systems. Geophysical methods have long been applied to characterize oil reservoirs, while their application to characterize aquifers is much more recent. Our research group is developing a novel set of approaches that combine diverse hydrologic and geophysical data sources to estimate flow and transport properties with the highest resolution possible.

Related Publications:

(more…)