Ecohydrologic Evaluation of the Higgins Lake-Level Control Structure

Higgins Lake and its outflow, the Cut River

Looking at Higgins Lake in Roscommon County, this project is analyzing the implications of a control structure dam on both the lake itself and the Cut River. Effects of erosion have been found and yet little study has been done on the structure’s role in the environment. This could play a large effect on not only the lake and river wildlife, but the economy and environment of the surrounding human population as well. The Higgins Lake Property Owners Association (HLPOA) made these possible implications and their concerns clear when they brought this issue to the Michigan Department of Natural Resources and Environment’s (MDNRE) Fisheries Division.


Nutrient Management Models to Constrain Harmful Algal Blooms

Targeted watersheds

Developing management strategies to minimize algal blooms requires detailed knowledge about the landscape factors that drive them. We will use over 35 years of Landsat imagery to map nearshore algal bloom intensity and extent at unprecedented spatial and temporal resolution. These will be related to watershed nutrient and sediment exports predicted using advanced watershed models at both sub-basin and Great Lakes Basin scales. We will then establish nutrient thresholds for specific HAB risks, identify sources of nutrients on the landscape, and prioritize restoration strategies.







USACE: Upland Sediment Production and Delivery in the Great Lakes Region under Climate Change

The Great Lakes and Ohio River Division (LRD) of the U.S. Army Corps of Engineers operates and maintains the U.S. portion of the Great Lakes Navigation System (GLNS) consisting of 139 projects (63 commercial and 76 shallow-draft), including three lock complexes, 104 miles of navigation structures, and over 600 miles of maintained navigation channels. The GLNS is a complex deepwater navigation system stretching 1,600 miles through all five Great Lake and connecting channels from Duluth, Minnesota to Ogdensburg, New York. In 2006, approximately 173 million tons of commodities were transported to and from U.S. ports located on the waterways of the Great Lakes system. It is a non-linear system on interdependent locks, ports, harbors, navigational channels, dredged material disposal facilities, and navigation structures. The GLNS provides an estimated transportation rate savings benefit of $3.6 billion per year. Waterborne commerce is the most environmentally friendly and safest form of transportation of bulk commodities, producing lower emissions as well as lower damages to property and a reduction in fatal and non-fatal injuries when compared to transportation by truck or rail. A recent study concluded that pollution abatement savings resulting from the continued usage of the GLNS exceed $350 million annually.

In contrast to the Western U.S., many climate change models predict increased precipitation in the Great Lakes region.  This increased precipitation (and runoff), coupled with warmer temperatures, has the potential to significantly affect sediment production and transport in Great Lakes rivers, increasing the loadings to federal harbors that already have a large dredging backlog.  Additionally, a number of future climate scenarios predict lower water levels in the Great Lakes, which would further exacerbate the impacts on harbors.  This project will look at two federal harbors in the Great Lakes and their watersheds in order to examine potential impacts.  The information gained from this work is expected to allow the Corps to make qualitative comparisons with current dredging requirements at most of the federal harbors in the Great Lakes.


Multi-scale Monitoring and Modeling of Land Use and Climate Change Impacts on the Terrestrial Hydrologic Cycle: Implications for the Great Lakes Basin

Vadose‐zone soil moisture is an important driver of processes in agricultural, hydrological, ecological, and climate systems, yet the detailed nature of plant water use across ranges of scales is often poorly characterized. With projected changes in climate and land use (including afforestation, urbanization, agricultural intensification, and biofuels production) there is a critical need to understand the likely impacts on the hydrologic cycle and ecosystem health. Important hydrological and biophysical processes are not adequately characterized with point estimates, and models of rootwater uptake are generally unable to accurately predict such changes. Our objectives are to: 1) quantify multi‐scale dynamics of vegetation‐water interactions across different land cover types to improve predictive capabilities of hydrologic models, and 2) explore the impacts of land use and climate changes on watershed‐ to Great Lakes Basin‐scale hydrologic fluxes.

Figure: ILHM simulated annual recharge for the Muskegon River Watershed

To explore the likely effects of projected changes in climate and land cover, we propose to use time‐lapse electrical resistivity imaging and a novel coupling of a fully integrated terrestrial hydrology model with a dynamic vegetation growth model to study managed and natural sites along a climate gradient across a range of soils. The intellectual merit of this research includes 1) improved knowledge and predictive capability of short‐ and long‐term processes that drive the terrestrial water cycle, 2) root‐zone moisture and root‐development data that will improve parameterization of roots in coupled land surface and climate models, and 3) quantitative information about implications of land use and climate changes across a range of scales.






Sediment Loading in the Jordan River Watershed

The MSU Hydrogeology Lab has been conducting research in the Jordan River Watershed since 2006. The objective has been to understand the causes and possible solutions to sand accumulation on what had been considered previously to be a primarily gravel-bed stream. The sand is believed to be negatively impacting the fishery of the Jordan River, possibly reducing populations of brown and brook trout in one of Lower Michigan’s premier cold water streams. The work has been funded by the Friends of the Jordan River.

During the course of our research, the Lab has installed a network of stream gauging stations to continuously monitor stream flow and temperature, conducted extensive channel surveys for sediment and flow modeling, surveyed the stream channel with a variety of sophisticated instruments including an Acoustic Doppler Current Profiler (ADCP), survey-grade Global Positioning System (GPS), and both floating and land-based Ground Penetrating Radar (GPR).


Hydrostratigraphic Characterization

Hydrostratigraphic CharacterizationRelated Publications:

Bennett, GL, GS Weissmann, GS Baker, and DW Hyndman, (2006), Regional-scale assessment of a sequence bounding paleosol on fluvial fans using ground penetrating radar, eastern San Joaquin Valley, California, GSA Bulletin, 118, pp 724–732

Microcosm Studies

Empty MesocosmSolute transport through heterogeneous environments is often poorly understood because of inadequate definition of aquifer stresses and boundary conditions. One approach to address these concerns is to transport a large, minimally disturbed, highly heterogeneous aquifer mesocosm to a controlled laboratory setting. This approach will bridge the gap between small-scale laboratory studies and large-scale field studies.

Field Scale Bioremediation Design and Reactive Transport

Schoolcraft Bioremediation DesignGround-water contamination with volatile organic compounds is a significant national and international problem. Waters containing these contaminants are typically pumped from contaminated aquifers and treated by air stripping or sorption onto activated carbon. These methods are costly, do not destroy the contaminants, may require pumping and disposal of large water volumes, and do not effectively remove contaminants sorbed to the aquifer material.Accordingly, there has been a great deal of interest in alternative treatment strategies, such as enhanced in-situ remediation. Our research group in collaboration with the Departments of Civil and Environmental Engineering and the Center for Microbial Ecology designed and installed a cost-effective biocurtain that is currently being used to remove carbon tetrachloride from an aquifer in Schoolcraft, Michigan. Novel aspects of the design are the use of closely-spaced wells to recirculate solutes through a biocurtain, well screens spanning the vertical extent of contamination, and a semi-passive mode of operation, with only six hours of low-level pumping per week.


Interactions Between Hydrologic, Microbial, and Geochemical Processes

Wurtsmith TEAPA fundamental issue in aquifer biogeochemistry is the means by which solute transport geochemical processes, and microbiological activity combine to produce spatial and temporal variations in redox zonation.  Our Hydrogeology and Hydrogeochemistry groups are examining the temporal variability of TEAP conditions in shallow groundwater contaminated with waste fuel and chlorinated solvents. (more…)